Development status and preliminary test results of a cryogen-free MgB₂ SMES system

Antonio Morandi

University of Bologna, DEI – Dep. of Electrical, Electronic and Information Engineering

TERSTUDIORU MULTINA T.D. 1088

P. L. Ribani, G. Russo

University of Bologna, Italy

C. Gandolfi, R. Chiumeo, A. Clerici, D. Bartalesi, D. Raggini
RSE S.p.A - Ricerca sul Sistema Energetico, Milan, Italy
D. Magrassi, A. Capelluto, F. Telesio, M. Neri
ASG Superconductors SpA,Genoa, Italy

C. Ferdeghini, S. Siri, M. Vignolo

CNR – SPIN, Genoa, Italy

Wednesday, September 8th, 2021

Outline

- SMES Technology status
- The DRYSMES4GRID project: an MgB2 SMES demonstrator
 - Design methodology and results
- Reducing the demonstrator size a 21 kJ / 7 kW MgB2 SMES
 - Manufacturing and assembling
 - First test results

The state of the art of SMES technology

The DRYSMES4GRID Project

MISE - Italian Ministry of Economic Development Competitive call: research project for electric power grid

- Transmission and distribution
- Dispersed generation, active networks and storage
- Renewables (PV and Biomass)
- Energy efficiency in the civil, industry and tertiary sectors
- Exploitation of Solar and ambient heat for air conditioning

Project DRYSMES4GRID funded

- Budget: 2.7 M€
- Time: June 2017 June 2020
- Extended to September 2021

Project Coordinator:

• ASG Superconductors SpA, Genova, Italy

Partners

- University of Bologna
- RSE S.p.A Ricerca sul Sistema Energetico, Milan
- CNR SPIN, Genoa

The DRYSMES4GRID system

• Objective: supporting grid and load power both in shunt and in islanded operation

Design of Power Hardware
 &Control

Reference Conductor – Rectangular tape with 6 filaments

2,05 mm

Composition and characteristics			
MgB ₂	29 %		
Monel 400 (external sheath)	44 %		
Nickel 201 (internal matrix)	27 %		
Number of filaments	6		
Thickness	1.1 mm		
Width	2.05 mm		
Cross section	2.05 mm ²		
Twis pitch	600 mm		

Additional external copper

Copper strip with 500 μm thickness applied on one side by tin-soldering

Filling factor of protective copper: 0.313 (500 μ m strip)

Electrical insulation

125 μ m insulating wrapping

A 19 filament tape with same geometrical characteristics and improved I_c vs B,T performance (>30%) could also become available within the time frame of the project

Inner radius, mm	200	
	300	, 0.3 m
Height, mm	1200.6	
Number of layers	10	
Number of turns per layer	522	
Length of cable, km	10.1	
Voltage of the dc bus, V	750	E 3
Min Current, A	266.6	603
Max current, A	467	
Field on conductor (at Imax), T	1.63	
I/Ic ratio (at Imax)	0.6	
Inductance, H	6.80	
Total eneregy (at Imax), kJ	741	
Deliverable energy, kJ	500.4	
Dump resistance, Ω	2,14	
Max adiabatic hot spot temp., K	95.6	

Main characteristics of the designed 500 kJ / 200 kW SMES coil

- The SMES cannot be discharged below
 I_{min} = 267 A if the power of 200 kW is to be supplied/ absorbed (I_{min} = P/V_{dc})
- The designed coil fullfills the specifics (200 kW - 2,5 s) with an operaing temperature T ≤ 16 K and a max. current I_{max} = 467 A

Mechanical analysis

Mechanical design includes

- Pretensioning due to winding of the coil
- Thermal contraction during cool down
- Lorentz force

Elastic's moduli and thermal expansion coefficients of all materials taken from

- K Konstantopoulou et al., "Electro-mechanical characterization of MgB2 wires for the SC Link Project at CERN", SUST 2016
- J. W. Ekin, Experim. Techniques for Low Temp. Measurements, OUP, 2006
- P. Bauer et al., EFDA Material Data Compilation for Supercond. Simulation
- CRYOCOMP

Equivalent Young's modulus of the tape of 157.3 MPa obtained from weighted average

Stress within allowable limit for all materials

Strain within allowable limit for all materials

Von Mises stress

Electrical insulation

Voltage surge (1 us) on the coil due to switching **Uneven distribution of voltage among turns**

Versus ground voltage distribution of the coil calculated via lumped parameter circuit

Actual vs. ground voltage distribution of turns after at chopper switching

Electric field

E_{max} within allowable limit of 1.2 kV/mm

3D Quench Analisys

The composite (MgB2 tape + Cu strip + G10) block is replaced by an equivalent homogeneous one

- Equivalent longitudinal resistivity ρ_{eq} from electric parallel
- Equivalent thermal capacity $c_{\mbox{\scriptsize eq}}$ from $\dot{\mbox{\ volume\ weighted\ average}}$
- Equivalent thermal conductivities (k_{req} , $k_{\theta eq}$, k_{zeq}) from thermal flux due to unit temperature drop in each direction

Thermal transient on a 15° sector made of 4x4 strand is calculated

- A 50 J heat relased in a small volume ٠ located at the middle radius of the coil
- 0.2 s delay before detection ٠

ANSYS 8 2018

A max temperature of 108 K is reached in the coil Mechanical stress due to thermal expansion within allowable limits

Temperature distrbution at 1 s

MATE NUM

AC loss calculation - the THELMA model

AC loss of the MgB2 coil during charge and discharge of the SMES are calculated by means of the THELMA

A in house numerical model developed in the frame of an Italian initiative, originally for fusion problem

10 turns – 19 m of conductor

- A 3D mesh of 10 turns is generated by extrusion along the helix pattern of the coil (the remain of the coil act as a field source)
- A 3D FEM simulation based on integral formulation is performed

- Ten turns located at the top and at the middle of the layer
- All layers (20 cases in total)

Coil – not to scale

Simulated case

Waveform of coil current is obtainded from operating conditions – no details of the PCS needed

Antonio Morandi Alma Mater Studiorum

Dissipated power

- Current of filaments below the critical value during steady SMES operation
- Critical current largely overcome during ramp due to coupling currents

- Loss due to coupling current are negligible compared to loss in the superconductor filaments
- An average power of about 155 mW / turn occurs at the bottom of the coil

Power conditioning system – control hardware and algorithms

- Detailed definition of control algorithms (logic, schemes, parameters) completed by means of SIMULINK and ATP simulations
 - Shunt operation (power modulation, active filter) and islanding operation
 - Shift from shunt to islanding operation
- Integration of the magnet protection system
- Control hardware in the loop testing planned

Regulator proportional and integral gains [Kp, Ki]

Idq PI controller [1.4, 200] Vdq PI controller [5, 1000] Vdc PI controller [200, 10000]

- Effective compensation of load current harmonics and reactive power (SAPF)
- Effective compensation of voltage interruption (UPS)
- Smoot transition (small current and voltage surges) between SAPF and UPS

Power conditioning system – power hardware

Definition of power hardware

- Converters architecture
- Switch technology
- Capability

.

٠

Technical specifics for commissioning and type testing issued

Outline

- SMES Technology status
- The DRYSMES4GRID project: an MgB2 SMES demonstrator
 - Design methodology and results
- Reducing the demonstrator size a 21 kJ / 7 kW MgB2 SMES
 - Manufacturing and assembling
 - First test results

Motivation – critical production process

Composition and characteristics		
MgB ₂	29 %	
Monel 400 (external sheath)	44 %	
Nickel 201 (internal matrix)	27 %	
Number of filaments	6	
Thickness	1.1 mm	
Width	2.05 mm	
Cross section	2.05 mm ²	
Twis pitch	600 mm	

3,6 mm

Material	Area (mm ²)	%
MgB ₂	0.23	10
Ni	1.55	65
Iron	0.23	10
Copper	0.36	15
Total	2.37	100
Dimension	3.65 x 0.65	

0,6 mm

Main characteristics of the reduced size SMES coil

Min Current, A	120
Max current, A	240
I/Ic ratio (at Imax)	0.6
Inductance, H	0.75
Total eneregy (at Imax), kJ	21.6 kJ
Deliverable power, kW	7 (for 2.3 s)
Dump resistance, Ω	3,0

- Production of the selected conductor in long the long lengths needed for manufacturing the designed magnet resulted critical
- A substitute conductor with improved in-field performance and established producibility was selected
- Downrating of the SMES system to 21 kJ / 7 kW was selected in order to simplify and speed up project conclusion

Demonstration of SMES technology based on dry-cooled MgB₂ achieved if tests are successful

Manufacturing and assembling of the 21 kJ SMES coil completed during April-August 2021

Antonio Morandi ALMA MATER STUC

Power conditioning system

Manufacturing and assembling of the 7 kW PCS completed during April-August 2021

Antonio Morandi Alma MATER STUE

Assembling of the SMES system

Assembling of the 21kJ / 7 kW SMES system completed at ASG premise in August 2021

Preliminary testing / 1

3.9 K reached on the coil in no load condition

Magnet cooldown successfully completed in September 2, 2021

Preliminary testing / 2

Controlled charge up to 6 J (4A) reached via the PCS

First magnet energization up to 4 A completed via the PCS in September 2, 2021

TEST 10/09/2021:PROVA-40

Layout del test:

- R = 8.6 Ω,
- frequenza di lavoro del chopper 2 kHz,
- frequenza di campionamento dei segnali di tensione e corrente 60 kHz
- Il chopper funziona nella modalità «controllo della corrente»

corrente ma misurata da due

- Ismes è misurata prendendo
- cavo della corrente era stato
- Ich è misurata prendendo il
 - prendendo il segnale dal sensore differenziale di RSE (f = 200 A/V)

Ismes

- Il segnale proveniente dalla sonda esterna risulta più preciso perché più vicino al fondo scala del sensore (grazie alle 6 spire di corrente realizzate)
- Offset di *Ismes*: 0.096 A
- Offset di *Ichopper*: -0.63 A
- La corrente nello SMES raggiunge un valore massimo medio di 8.35 A

Temperature

 Tutte le temperature vengono lette mediante GPIB dal lettore Lakeshore 224 T3 - T5 - Ismes

- La temperatura che più risente del calore dissipato è la T2.
- ➤ La potenza maggiore viene rilasciata dallo smes nella fase di scarica a causa dell'elevata derivata temporale della corrente (dI/dt ≅ 420 A/s in fase di scarica, dI/dt ≅ 4.2 A/s in fase di carica)
- > È presente un ritardo di circa 1.5 s fra il picco della temperatura e la fine della scarica ?

T8 - Ismes

 La temperatura dello schermo cresce di circa 0.5 K in corrispondenza della carica dello SMES e cala della stessa quantità in corrispondenza della scarica dello SMES ?

Conclusion

We are very excited to report on the complete test of the SMES system to be completed in September 2021