

Superconducting Energy Storage for Smart Electrical Grid

R. Chiumeo, A. Clerici, D. Bartalesi, D. Raggini RSE S.p.A
Morandi, P. L. Ribani, G. Russo, U. Melaccio e A. Viatkin University of Bologna
D. Magrassi, A. Capelluto, F. Telesio, M. Neri ASG Superconductors SpA
C. Ferdeghini, S. Siri, M. Vignolo CNR – SPIN

http://drysmes4grid.spin.cnr.it/

Chiara Gandolfi

RSE Ricerca sul Sistema Energetico spa Chiara.Gandolfi@rse-web.it

Outline

- The DRYSMES4GRID Project
- Objective
- The DRYSMES4GRID system
- First test results
- Conclusions

The DRYSMES4GRID Project

MISE - Italian Ministry of Economic Development Competitive call: research project for electric power grid

- Transmission and distribution
- Dispersed generation, active networks and storage
- Renewables (PV and Biomass)
- Energy efficiency in the civil, industry and tertiary sectors
- Exploitation of Solar and ambient heat for air conditioning

Project DRYSMES4GRID funded

- Budget: 2.7 M€
- Time: June 2017 June 2020
- Extended to September 2021

Project Coordinator:

• ASG Superconductors SpA, Genova, Italy

Partners

- University of Bologna
- RSE S.p.A Ricerca sul Sistema Energetico, Milan
- CNR SPIN, Genoa



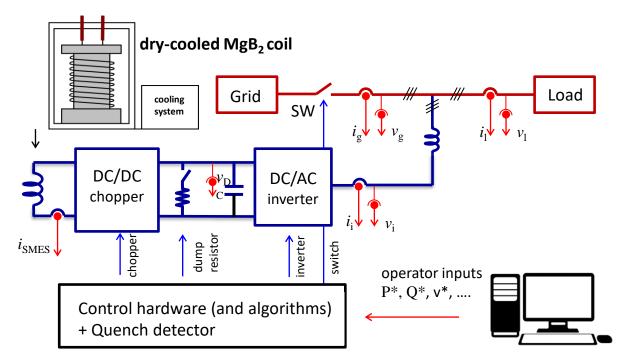
Objective and state of the art of SMES technology

The design of a SMES (Superconducting Magnetic Energy Storage) based on Magnesium Diboride (MgB2) to be connected to a LV distribution grid

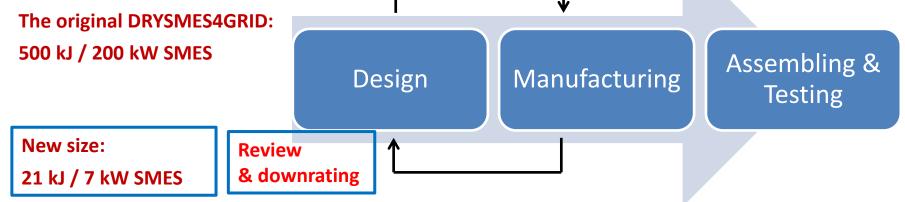
to demonstrate the **feasibility of a SMES** for achieving, with the same device, **Power Quality** and critical load protection functions.

The DRYSMES4GRID project:

- 21 kJ / 7 kW SMES
- MgB₂ material
- Cryogen free cooling


- The DRYSMES4GRID Project
- Objective
- The DRYSMES4GRID system
- First test results
- Conclusions

The DRYSMES4GRID system


Power Quality functions supporting grid and loads both grid connected and islanding operation

Project's status

- Electromagnetic & Mechanical design of the coil
- Thermal design (connection to cryocooler/s)
- AC Loss computation
- Control algorithms (logic, schemes, parameters)
- Design of Power Hardware & Control

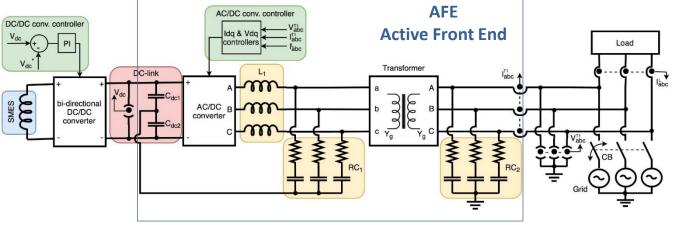
- Manufacturing of the coil & cooling system
- Manufacturing of Power Hardware&Control
- Assembling
- Testing

Accomplished activities

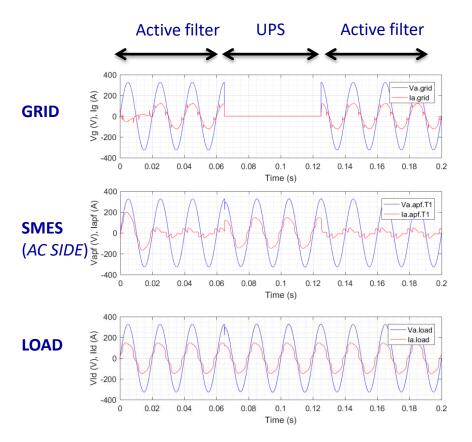
Manufacturing and assembling of the 21 kJ SMES coil completed during April-August 2021

MAGNET CHARGE RATED CURRENT

Controlled charge up to 20 kJ



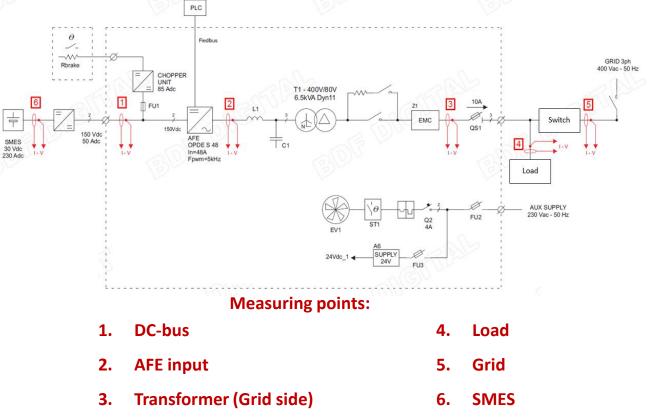
Time [s]


Power conditioning system – control hardware and algorithms

- Detailed definition of control algorithms (logic, schemes, parameters) completed by means of SIMULINK and ATP simulations
 - Grid connect operation (power compensation) and islanding operation
- Integration of the magnet protection system

1 1

- Effective compensation of load current harmonics and reactive power (SAPF)
- Effective compensation of voltage interruption (UPS)
- Smoot transition (small current and voltage surges) between SAPF and UPS


Power conditioning system – power hardware

Definition of power hardware

- Converters architecture
- Switch technology
- Capability
- Filter
- Measurment points

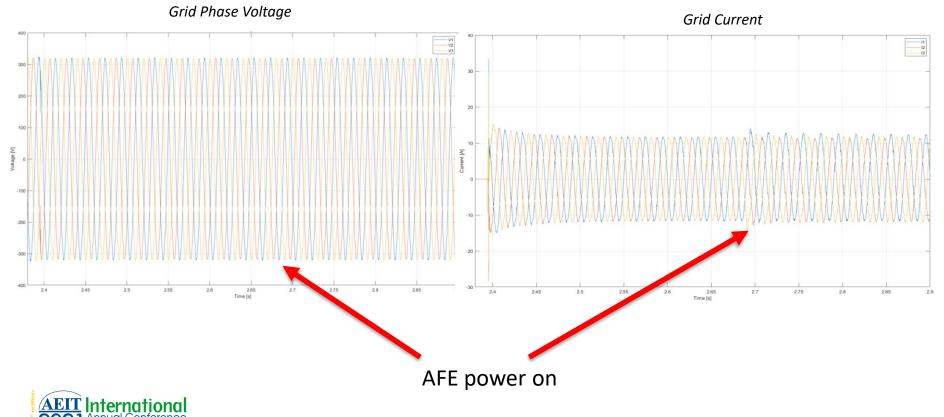
Technical specifics for commissioning and type testing issued

Power conditioning system (PCS)

Manufacturing and assembling of the PCS completed during April-August 2021

Three-phase voltage and AC current acquisition system

- Device National Instruments: NI-PXI-1031
- > 24 channels: 6 measures (3 currents and 3 voltages) for each measuring point
- Sampling frequency: 30 kHz



Three-phase voltage and AC current acquisition system: RL load and AFE insertion

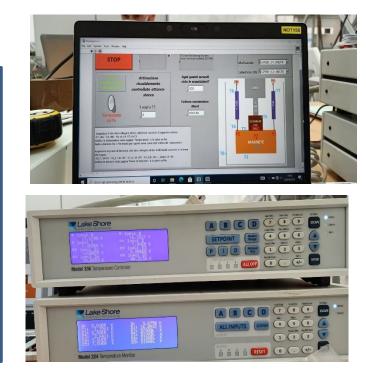
15

Assembling of the SMES system

Assembling of the 21kJ / 7 kW SMES system completed at ASG premise in August

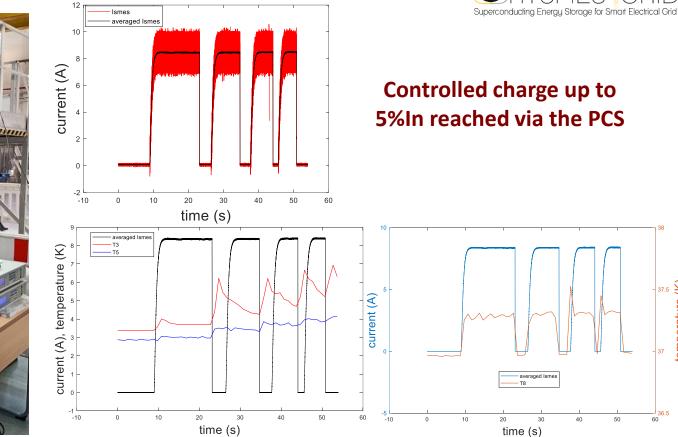
Outline

- The DRYSMES4GRID Project
- Objective
- The DRYSMES4GRID system
- First test results
- Conclusions



Preliminary testing / 1

Magnet cooldown successfully completed in September 2, 2021



Preliminary testing / 2

temperature (K)

60

During week 36: SMES energization up to 35 A (15%In) via PCS.

Conclusions

In these weeks the final experimental tests are ongoing, in particular:

- Grid connect operation to compensate active and reactive power variations
- Islanding operation to supply "critical loads"

The demo size can be considered as a scalable and replicable power module useful to demonstrate the feasibility of SMES in the short/medium term at competitive cost based on Magnesium Diboride (MgB2).

The DRYSMES4GRID project shows the benefits related to the synergy between the world of research and the national industry.

Thanks for your attention

http://drysmes4grid.spin.cnr.it/

This work has been financed by the Research Fund for the Italian Electrical System in compliance with the Decree of Minister of Economic Development June 30, 2014.

