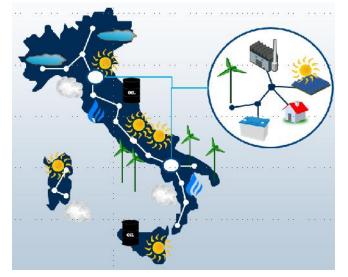
The DRYSMES4GRID project:

development of a cryogen free cooled 500 kJ / 200 kW SMES demonstrator based on MgB₂

A. Morandi¹, A. Anemona², G. Angeli³, M. Breschi¹, A. Della Corte², C. Ferdeghini⁴, C. Gandolfi³, G. Grandi¹, G. Grasso⁵, L. Martini³, U. Melaccio¹, D. Nardelli⁵, S. Turtù², P. L. Ribani¹, S. Siri⁴, M. Tropeano⁵ and M. Vignolo⁴

- 1. University of Bologna, Italy
- 2. ICAS S.C. r. l. The Italian Consortium for Appl. Supercond., Frascati (Rome), Italy
- 3. RSE S.p.A Ricerca sul Sistema Energetico, Milan, Italy
- 4. CNR SPIN, Genoa, Italy
- 5. Columbus Superconductors SpA, Genova, Italy

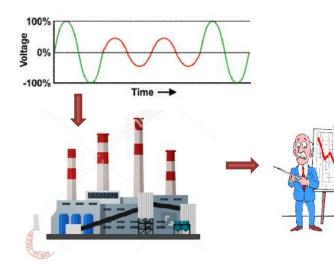
13th European Conference on Applied Superconductivity Monday, September 18, 2017, Geneva - Switzerland


Outline

- SMES technology a player in energy storage?
- Outline of the project
- The magnet system
- Power conditioning system
- Test facility
- Conclusion

The need for electric energy storage

Grid



Inherent generation / load imbalance due to loads fluctuation and non programmable generation

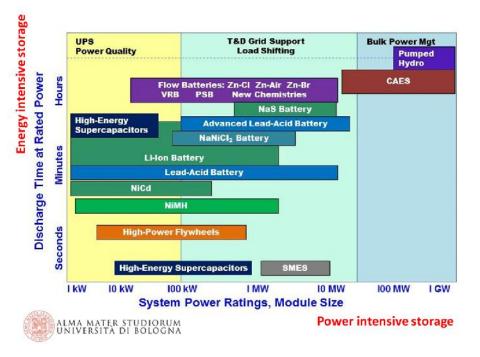
Methods/technologies for grid energy management

- Curtailment of renewables
- Improved controllability of convent. generation
- Demand control
- Network upgrade (... Supergrid)
- Energy storage

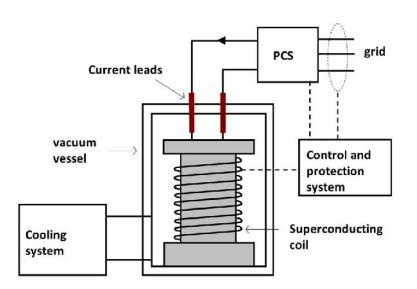

Customer

Energy storage

- Power quality and UPS
- Leveling of impulsive/fluctuating power (industry, physics, ...)


Which storage technology?

Parameters of the energy storage system


- Absorbed/supplied power, P
- Duration delivery, Δt
- Number of cycles, *N*
- Response time, t_r

No unique storage technology exists able to span the wide range of characteristics required for applications

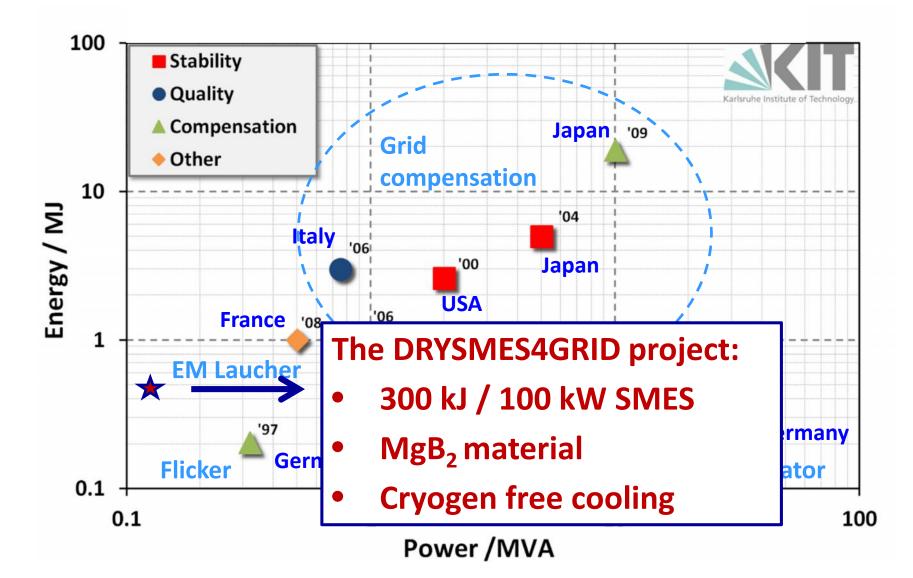
- Most suitable storage technology must be chosen from case to case
- Hybrid systems, obtained by combining battery with SMES, can be the best solution in many cases

Prospects for SMES

- High deliverable power
- Virtually infinite number of cycles
- High round trip efficiency
- Fast response (<1ms) from stand-by to full power
- No safety hazard
- Low storage capacity
- Need for auxiliary (cooling) power
- Idling losses

SMES is an option for

• Fast delivery of large power for short time


UPS for sensitive industry customers, bridging power, pulsed load (physics),

- Short term increase of peak power of energy intensive systems in combination with batteries, hydrogen, liquid air,
- Continuous deep charge/discharge cycling

leveling of impulsive loads

The state of the art of SMES technology

The DRYSMES4GRID Project

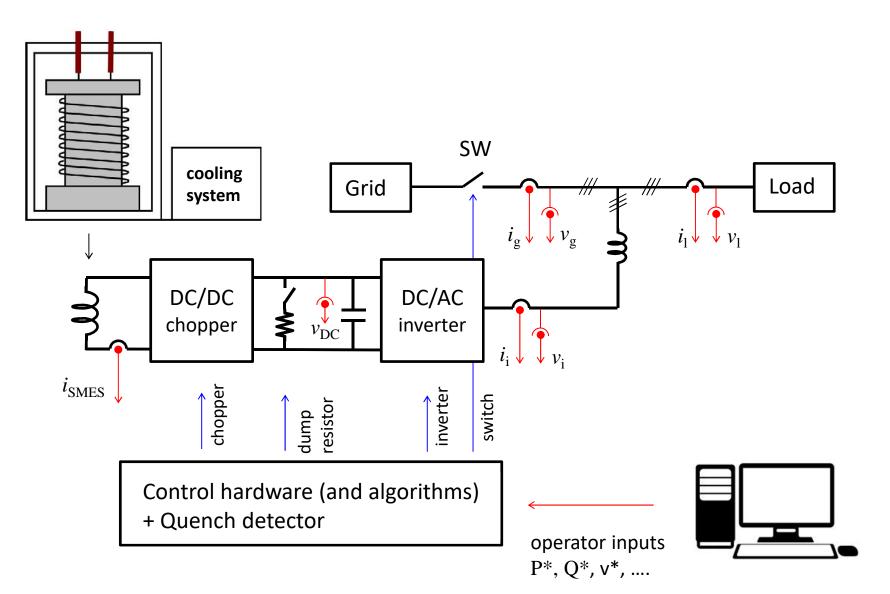
MISE - Italian Ministry of Economic Development Competitive call: research project for electric power grid

- Transmission and distribution
- Dispersed generation, active networks and storage
- Renewables (PV and Biomass)
- Energy efficiency in the civil, industry and tertiary sectors
- Exploitation of Solar and ambient heat for air conditioning

Project DRYSMES4GRID funded

• Budget: 2.7 M€

- developm. of dry-cooled SMES based on MgB₂
- Time: June 2017 June 2020 •
- 300 kJ 100 kW / full system


Project Coordinator:

• Columbus Superconductors SpA, Genova, Italy

Partners

- University of Bologna
- ICAS The Italian Consortium for ASC, Frascati (Rome)
- RSE S.p.A Ricerca sul Sistema Energetico, Milan
- CNR SPIN, Genoa

The SMES system

Project Workplan

Design of the magnet

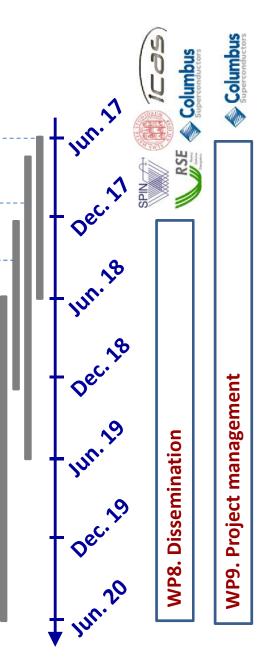
WP1. Electromagnetic & thermal design

Power conditioning system

WP2. Layout and functions

WP3. Detailed design and manufact. of converters

Wire, cable and winding


WP4. Optimization of in-field perform. of the wire WP5. Manufacturing of wire, cable and winding

RSE TCAS

Assembling and test

WP6. Assembly of coil and cooling & prelim. test

WP7. Assembly of PCS & Experiments in test facility

SMES

of

analys.

Tech.&Econ.

WP10.

Outline

- SMES technology a player in energy storage?
- Outline of the project
- The magnet system
- Power conditioning system
- Test facility
- Conclusion

Design strategy of the MgB₂ magnet

System inputs

- Power (100 kW)
- Delivery time (3s)

Additional copper on the conductor

Constraints & design parameters

- Jc(e)-B of conductor ۲
- **Operating temperature**
- J/Jc
- Cu/total ratio of conductor ٠
- Max field on the conductor ۲
- Voltage of DC bus
- Max voltage of the coil ۰
- **Ouench** detection time ۰
- Max temperature during quench ۰
- Aspect ratio of the solenoid ٠
- Filling factor of coil •

Design choice

Number of turns/inductance/Max. current

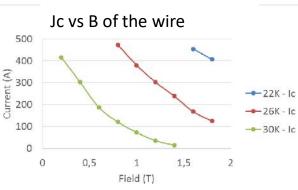
Task leaders

With the support of

- RSE
- Shared procedure
- **Shared software**

(optimization)

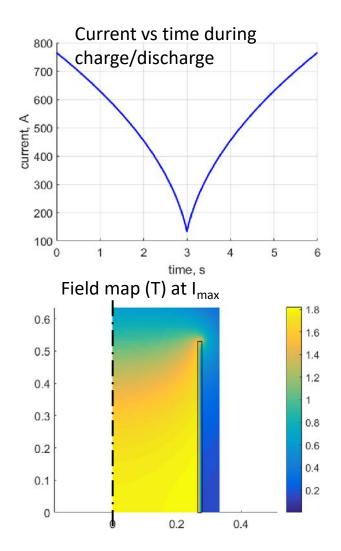
Output


- Layout conductor and cable
- Maximum current
- Layout of coil (diameter, height, ۰ thickness, layers, wire length ...)
- **Dump** resistance ۲

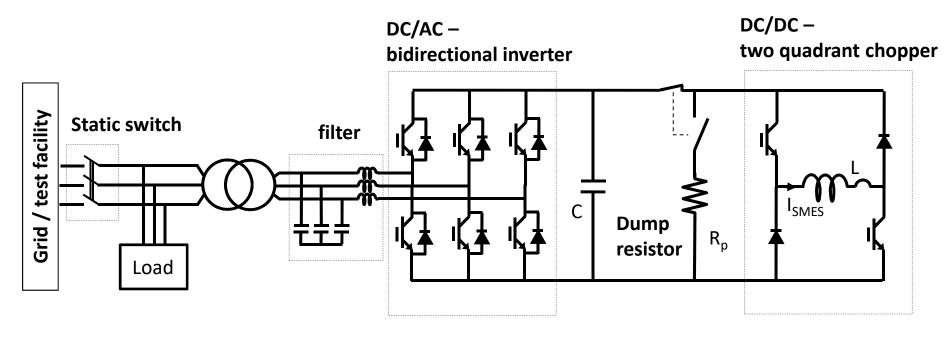
Check

- Manufacturability of conductor and cable
- **Mechanical stress** •
- AC loss and total thermal load ٠

A preliminary lay-out



Main characteristics of the coil


Operating temperature	20 K
Diameter	268 mm
Length	1060 mm
Max Current	776 A
Imax / Ic	0.6
Max field on the conductor	1.8 T
Max hot spot temperature $(\Delta t = 0.3 s)$	220 К
Iductance	1.06 H
Dump resistor	1.3 Ω
Length of conductor	3.7 km
Total stored energy at I _{max}	310 kJ
Deliverable energy (at 100 kW)	300 kJ

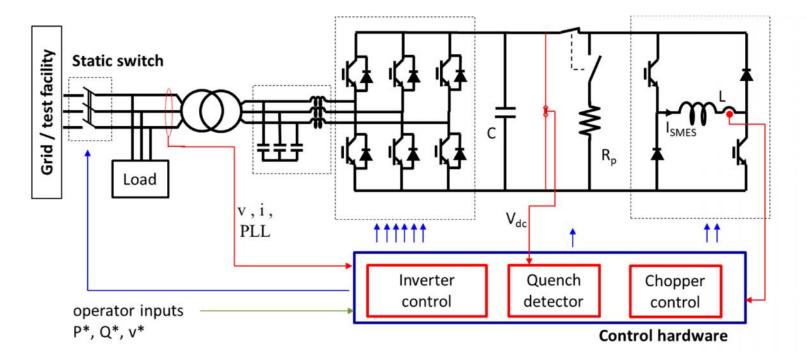
Numerical modelling is in progress of estimation of AC loss

3 Î w 1.52 mm MgB2 wires Monel + Internal Copper + 40 ∼m Cu Coating 630 A @ 1.8 T – 20 K

Power conditioning system – power hardware

Detailed design of converters (architecture and switch technology), filter, switch

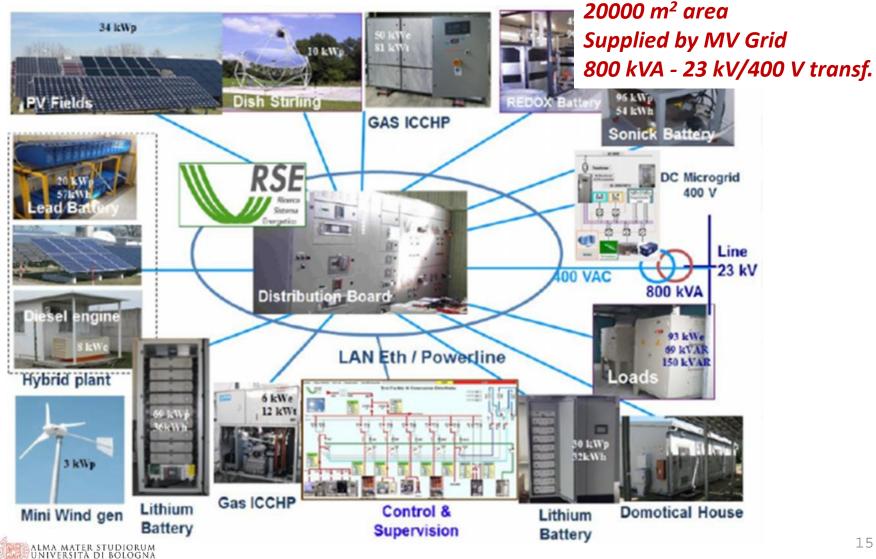
Mimimization of stand-by loss


- SiC technology
- Multilevel structure with MOSFET
- Additional low-loss switch

(cryogenic integration of silicon device?)

Specifics for commissioning and type testing

Power conditioning system – control hardware and algorithms



- Detailed definition of control algorithms (logic, schemes, parameters)
 - Shunt operation (power modulation, active filter) and islanding operation
 - Shift from shunt to islanding operation
- Control hardware in the loop testing
- Integration of the magnet protection system

RSE DER (Distributed Energy Resources) Test Facility

A real low voltage microgrid that interconnects different generators, storage systems and loads to develop studies and experimentations on DERs and Smart Grid solutions.

Conclusion

- SMES is viable storage technology for power intensive applications and for operation in hybrid storage systems
- Improvements of SMES technology can be obtained by means of HTS superconductors compatible with cryogen free cooling
- A three year research project has been recently started in Italy aimed at developing a 300 kJ / 100 kW SMES demonstrator with cryogen free cooling based on MgB2
- All engineering aspects needed of the practical development of SMES technology, ranging form magnet technology to power electronics and control, will be dealt with in the project

Thank you for your attention antonio.morandi@unibo.it

